Evaluation of Neural and Non-Neural Extractive Single Document Summarization Techniques

Ron Fan & Aditya Saraf

Abstract

Current approaches to single document summarization are largely divided between neural and combinatorial approaches.

We explore the differences between the two types of models to draw conclusions about the strengths and weaknesses of each model.

Data & Experiments

Preprocessing:

- \checkmark Abstract summaries \rightarrow extracted summaries
- Tokenization
- Stoplist filtering
- × Lemmatization
- × Explicit feature tagging (POS, NER)

Data:

- CNN/DailyMail
 - Training set: ~310,000 documents with greedily generated labels
 - Test set: 10,000 documents
- Australian Law Cases
 - Additional Test set: 4,000 documents in a different domain
 - Compares domain adaptability

Results:

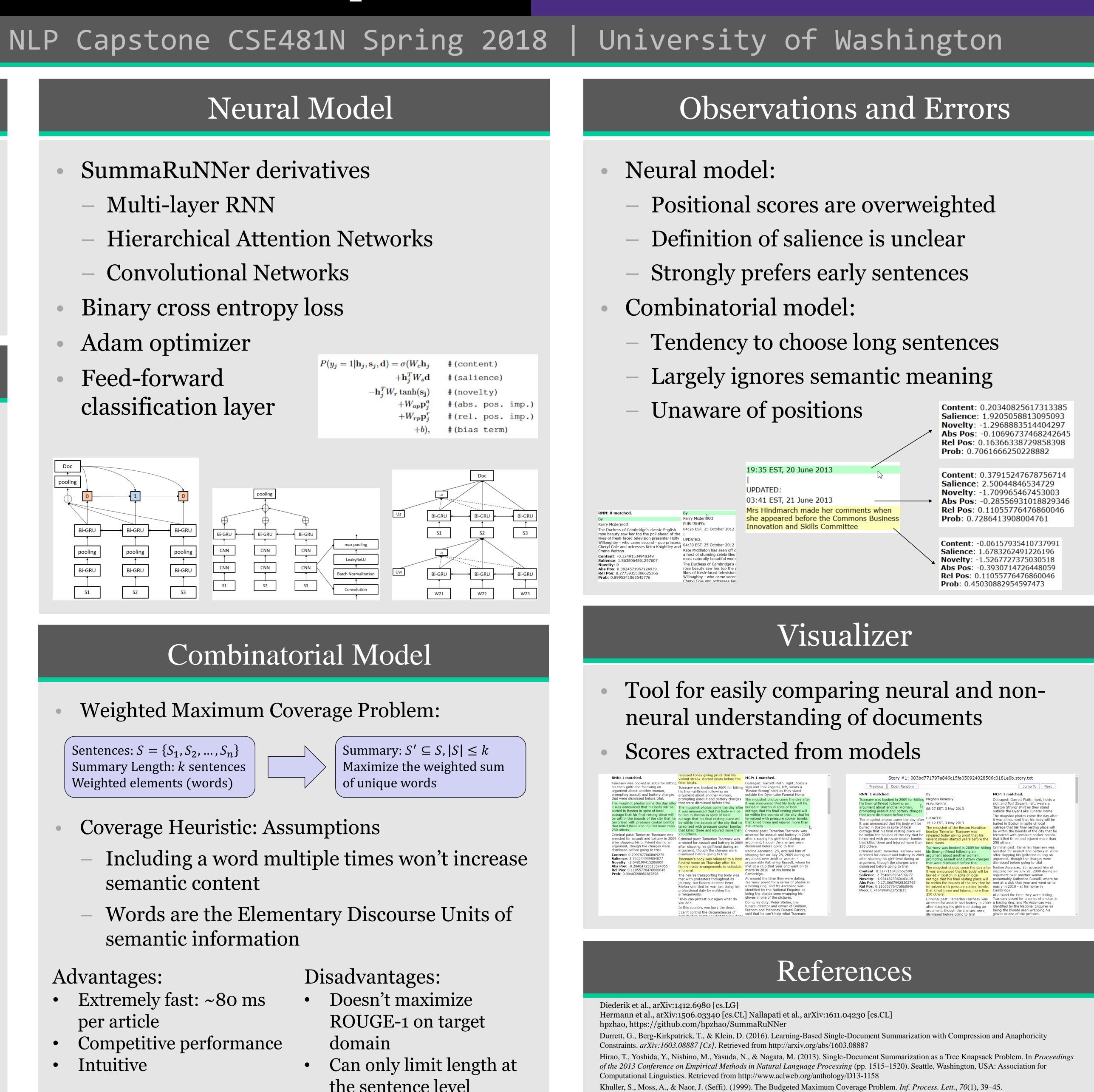
Model	ROUGE-1	ROUGE-1 F1	ROUGE-2	Runtime
First-K	0.410247	0.252497	0.174275	35048
Unweighted Greedy MCP	0.533134	0.237928	0.183332	38967
MCP	0.547118	0.262058	0.207809	71355
Neural	0.5397474	0.292089	0.229425	1145616
Oracle	0.68059	0.37807	0.38756	N/A

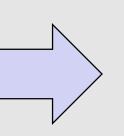
Law articles:

Model	ROUGE-1	ROUGE-1 F1	ROUGE-2	Runtime
MCP	0.56808	0.11932	0.17202	176708
Neural	0.54434	0.15179	0.18272	1015356
Oracle	0.66658	0.17366	0.32877	N/A

- Feed-forward

$P(y_j = 1 \mathbf{h}_j, \mathbf{s}_j, \mathbf{d}) = \sigma(W_c \mathbf{h}_j)$	#(content)		
$+ \mathbf{h}_j^T W_s \mathbf{d}$	#(salience		
$-\mathbf{h}_{j}^{T}W_{r} anh(\mathbf{s_{j}})$	#(novelty)		
$+W_{ap}\mathbf{p}_{j}^{a}$	#(abs. pos		
$+W_{rp}\mathbf{p}_{j}^{r}$	#(rel. pos		
+b),	#(bias ter		





- the sentence level
- Exponential slowdown with larger inputs

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

https://doi.org/10.1016/S0020-0190(99)00031-9 Lin, C.-Y. (2004). ROUGE: A Package for Automatic Evaluation of Summaries. In S. S. Marie-Francine Moens (Ed.), Text Summarization Branches *Out: Proceedings of the ACL-04 Workshop* (pp. 74–81). Barcelona, Spain: Association for Computational Linguistics. Nishikawa, H., Hirao, T., Makino, T., & Matsuo, Y. (2012). Text Summarization Model based on Redundancy-Constrained Knapsack Problem. Presented at the COLING.

