
Evaluation of Neural and Non-Neural Techniques for Extractive Single
Document Summarization

Aditya Saraf and Ron Fan
Paul G. Allen School of Computer Science & Engineering

University of Washington
Seattle, WA 98195, USA

{sarafa,ronbo}@cs.washington.edu

Abstract

Current approaches to single document sum-
marization generally belong to one of two cat-
egories of models. The first, neural mod-
els, typically involve encoding sentences and
documents through recurrent or convolutional
neural networks and then decoding a summary.
The second, combinatorial or non-neural mod-
els, attempt to solve the problem of summa-
rization algorithmically by posing the task as a
variant of some common combinatoric prob-
lem, such as Maximum Coverage or Knap-
sack. We seek to compare these techniques
across many axes, including runtime, perfor-
mance, and the ability to generalize to new do-
mains. We apply neural and non-neural extrac-
tive single document summarization models to
two shared datasets and extract internal model
scores to facilitate manual analysis of each
model’s tendencies in document summariza-
tion. We also design a visualizer that presents
this information in an easily-navigable format.

1 Introduction

Single document summarization is a problem with
many obstacles, and as a result, many distinct
approaches. These approaches can generally be
distinguished as either neural or non-neural mod-
els (Allahyari et al., 2017). Despite significant
differences in model design and summary emis-
sion, many models are able to achieve results
respectably comparable to state-of-the-art results
(Hirao et al., 2013; Cheng and Lapata, 2016).
This suggests that these models may have differ-
ent strengths and weaknesses which can be aug-
mented using knowledge of other successful ap-
proaches. Single document summarization tech-
niques can be considered in three groups. For our
work, we opted to restrict experimentation to ex-
tractive summarization techniques only. Abstrac-
tive summarization and extractive summarization

with compression both require models to be capa-
ble of more than identifying key points in a docu-
ment and summarizing those points, which is what
we want to focus on.

1.1 Abstractive Summarization

Abstractive summarization refers to document
summarization that generates novel sentences de-
scribing the document. This is almost always ac-
complished with neural models due to the lack
of effective non-neural generative models. Ex-
ample abstractive summarization models include
a variety of RNN-based encoder-decoder models,
sometimes with attention over inputs and outputs
(Paulus et al., 2017). These models encode input
documents as a single hidden layer and decode a
sequence of words from the hidden state.

Abstractive summarization seems to be inap-
propriate for the purpose of comparing with non-
neural models due to the on-going problem of co-
herence in longer generated sections (Paulus et al.,
2017). We feel that the problem considered to
be most challenging in abstractive summarization
is not forming an accurate understanding of key
points in a document, but rather, building readable
sentences from a given set of talking points. Fur-
thermore, combinatorial models are typically re-
stricted to extractive summarization.

1.2 Extractive Summarization with
Compression

Extractive summarization with compression refers
to document summarization that generates novel
sentences by applying grammatical constraints
and rules to the original document. Some ap-
proaches to extractive summarization techniques
convert textual units derived from the original
document into well-formed summaries by using
anaphoricity constraints to reduce the frequency
of incomprehensible anaphoras in summaries and

enforcing grammaticality using rule-based gram-
maticality constraints (Durrett et al., 2016).

We chose to exclude compression techniques
from our analysis due to what we perceived as
an artificial, albeit very good, improvement of co-
hesion and ROUGE scores by enforcing a set of
constraints which are difficult to generalize. We
also felt that the implementation of such a system
would introduce an unnecessary layer of complex-
ity to our analysis.

1.3 Extractive Summarization

Extractive summarization is a summarization
technique that forms summaries using chunks of
texts taken directly from the input document. Ex-
tractive summarization techniques commonly ex-
tract at a sentential level, although they may also
choose to extract individual words (Nallapati et al.,
2017; Cheng and Lapata, 2016).

With extractive summarization, our neural
model can make summaries that are identical to
a concurring non-neural model. Although the re-
sulting summaries may have lower levels of co-
hesion due to anaphoras and noise in documents,
we believe they are the most fair for comparing to
non-neural models which extract sentences from
documents and make no modifications.

Our hypothesis was that combinatorial ap-
proaches would perform better at extractive sum-
marization, since they more clearly exploited the
structure of the problem. To this end, we built
a simple combinatorial model and compared it
against a state of the art neural model.

2 Related Work

Although much work has been done on neural and
combinatorial models for extractive SDS1, to the
best of our knowledge, our paper is the first at-
tempt to compare the different approaches on the
same datasets. Our neural model is SummaRuN-
Ner, which will be explained more in-depth in sec-
tion 4 (Nallapati et al., 2017). Our combinatorial
model was built from scratch, based on a reduc-
tion to the Maximum Coverage Problem, as ex-
plored in (Takamura and Okumura, 2009). Our
MCP model is quite simple – we’ll briefly survey
some other state of the art combinatorial models.

Hirao et al. (2013) produce a model based on
the Tree Knapsack Problem, which is similar to
the traditional project selection problem taught as

1Single Document Summarization

a common application of network flow. Their ap-
proach uses significant linguistic sophistication:
they represent the document first as a Rhetorical
Structure Theory Discourse Tree (REP-DT) and
then convert it into a Dependency Discourse Tree
(DEP-DT). They then trim the tree to preserve
only the key semantic information, with the added
benefit that anything that the summary semanti-
cally relies on (to be understood) will likely be
included. Our goal was to implement a simpler
combinatorial algorithm that could make use of
our large training corpus, so we didn’t use this ap-
proach.

Durrett et al. (2016) produce a custom ILP
model based on information compression and
anaphoracity constraints. These anaphoracity con-
straints deal with words (such as pronouns) that
refer to information found earlier in the document,
which might confuse readers if left out. Their
model is extractive at the subsentential level - they
compress sentences and rewrite pronouns in order
to include more content and improve the summa-
rys readability. Their model performed very well
and could easily accommodate word weights, as
they also had access to a large corpus (the paid
New York Times corpus). But since our goal was
to build a simple combinatorial system, we choose
to instead reduce text summarization to MCP.

3 Neural Model

For the neural model we use for our later compar-
isons, we chose to use three models derived from
the SummaRuNNer model introduced in Nalla-
pati et al. (2017) and partially implemented by
Zhao (2018). The SummaRuNNer model is de-
signed for extractive single document summariza-
tion and generates binary classification labels in-
dicating whether a sentence is included in the final
summary or not.

3.1 RNN-RNN

This model is most similar to the one described
in Nallapati et al. (2017). In the first layer, each
sentence in the document is converted to a word
embedding and fed into an RNN layer with bidi-
rectional GRUs which encodes the words in the
sentence. A 1D adaptive max pooling is applied
and the result for each sentence is fed into another
RNN layer which forms a document representa-
tion through a fully-connected linear layer. Fi-
nally, a feed-forward classifier determines emis-

Figure 1: RNN-RNN: A two-layer RNN model us-
ing bidirectional GRUs. Figure from Zhao (2018).

sions by calculating a probability from a set of
component scores made through linear and bilin-
ear transformations.

3.2 CNN-RNN

Figure 2: CNN-RNN: Two convolutional layers
feeding into a recurrent GRU layer. Figure from
Zhao (2018).

This model uses convolutions to encode sen-
tences. The model takes in sets of words and
performs two one-dimensional convolution opera-
tions on them. The first convolution reduces the
number of channels and the second one simply
convolves on the same set of channels again. Each
convolution is followed by a 1D batch normaliza-
tion and a LeakyReLU activation. The result of the
convolution operations on each sentence is then
fed into an RNN layer with bidirectional GRUs.
The document encoding is formed through a fully-

connected layer which applies another 1D batch
normalization and a tanh activation. As before, a
feed-forward classifier determines emissions.

3.3 RNN-RNN with Attention

Figure 3: RNN-RNN with Attention: A two-layer
RNN with attention. Figure from Zhao (2018).

This model is similar to the RNN-RNN model.
The model has been augmented with attention,
which is implemented using the words and sen-
tences in the document as queries for an attention
layer.

3.4 The SummaRuNNer Classifier

All three models we examined share the same
SummaRuNNer-inspired classifier. The classifier
is used to generate the emissions for each label.

P (yj = 1 | hj , sj ,d) = σ(Wchj (content)

+hT
j Wsd (salience)

−hT
j Wr tanh(sj) (novelty)

+Wapp
a
j (abs. pos)

+Wrpp
r
j (rel. pos)

+b) (bias)

(1)
The classifier generates a probability through

the formulation shown in Equation 1. Each of
these components is assigned an interpretable def-
inition by Nallapati et al. (2017). Each component
is scored independently and the resulting scores
are combined into a probability through a sig-
moid function. We modified our models to track

and store these component scores which form the
probabilities that the model uses to make its top-k
decisions.

Content: The content weights measure the in-
formation content of a sentence. The layer is a
linear transformation.

Salience: The salience weights measure the
prominence of a sentence with respect to the
whole document. The layer is a bilinear transfor-
mation combining the sentence encoding with the
document encoding.

Novelty: The novelty weights measure the nov-
elty of a sentence given the current summary rep-
resentation. The current summary is squashed us-
ing a tanh activation and combined with the sen-
tence encoding in a bilinear transformation.

Absolute and Relative Positional Impor-
tance: The absolute and relative positional impor-
tance scores are derived from 50-dimensional po-
sitional embeddings. The positional embeddings
are learned through linear transformations. Abso-
lute positional embeddings are based on numeri-
cal positions in the document. Relative positional
embeddings divide the document into 10 segments
and score sentences in the same segment identi-
cally.

3.5 Training

We trained our models with a hidden unit size of
200, batch size of 32, learning rate of 1e-3, and
5 epochs. Training for each model took approxi-
mately 48 hours.

4 Combinatorial Model

Our combinatorial model was based on a reduction
from text summarization to the Weighted Maxi-
mum Coverage Problem (MCP). We first provide
a formal definition of (weighted) MCP:

Input: A collection of sets S =
{S1, S2, . . . , Sn}, an integer k, and a weight
function, w, that assigns a weight to each
ej ∈ S1 . . . Sn.

Output: A subset S
′ ⊆ S such that

∣∣∣S′
∣∣∣ ≤ k.

Objective: The weighted sum of all unique
elements in all Si ∈ S

′
is maximized.

Text summarization can be naturally reduced to
MCP. Each sentence in the document is treated as
a set of words, and the length of the summary is set
to k. Then the goal is to find k of the sentences that

maximizes the weighted sum of all unique words
contained in the summary.

The MCP relies on the Coverage Heuristic.
The Coverage Heuristic breaks the document into
elementary units (such as words) and attempts to
choose as many important unique units as pos-
sible, while retaining some of the original struc-
ture to ensure grammaticality. In our formulation,
the elementary units of the document are exactly
the words in the document, and we constrain the
model to pick entire sentences to ensure grammat-
icality. The two assumptions behind this heuristic
are:

1. Having a high number of important unique
words likely means you have a high amount
of semantic content.

2. Including a word multiple times in a sum-
mary does not increase the semantic content
of the summary.

These assumptions are obviously not exactly true
for real documents – semantic information may
come from key phrases or sentences (the sum of
the parts may be less than the whole) and using
the same word in different contexts may increase
the semantic content of the summary. But this is
still a useful heuristic in practice.

Since the MCP is NP-complete, there exists no
efficient algorithm to compute an optimal solution.
For this reason, we frame the problem as an Inte-
ger Linear Program and use an ILP solver. Our
ILP formulation is as follows:

Maximize:
∑
ej

w (ej) ∗ yj

Subject to:
∑

xi ≤ k∑
ej∈Si

xi ≥ yj

4.1 Learning Word Weights
We learned weights for the words2 with logis-
tic regression on the CNN/DailyMail training set
(∼310,000 documents). We used an L2 loss func-
tion, and converged in 730 iterations. Training
took around 11 hours.

5 Data

In this section, we describe (1) our primary
dataset, (2) major limitations of our dataset, and

2We used UNK tokens for any word that appeared less
than 5 times in the training corpus.

(3) an alternate dataset included to test the mod-
els’ ability to generalize to a different domain.

5.1 CNN/DailyMail Dataset
Our primary dataset is a collection of 300,000
short news articles compiled from CNN and Dai-
lyMail. This dataset is a very popular recent
dataset (Cheng and Lapata, 2016; Nallapati et al.,
2017; See et al., 2017) for text summarization that
was originally adapted from the reading compre-
hension domain. We follow the approach of See
et al. (2017) in using the non-anonymized ver-
sion instead of the anonymized version, as the
anonymized version has to be preprocessed us-
ing a Named Entity Recognition system. The
dataset contains very short articles (around 70 sen-
tences on average) with short, abstractive sum-
maries (around 3.75 sentences on average). We
partitioned the dataset into a training set of around
310k articles, and a test set of exactly 10k articles.

The biggest advantage of this dataset is its size.
With over 300,000 articles that take up more than
1.5 GB when uncompressed, this data allows for
large scale learning that traditional, ∼3,000 doc-
ument sets cannot accommodate. We wanted to
compare both neural and combinatorial models in
their best settings, so this dataset was a natural
choice. The dataset is also freely available (unlike
the large NYT corpus) and widely used, especially
in the past few years.

5.2 CNN/DailyMail Limitations
However, the dataset has several limiting issues.
One major issue is that because the file sizes and
summary lengths were so short, any reasonable ex-
tractive model would often generate largely over-
lapping summaries. This didn’t give the mod-
els much room to differentiate – most documents
had some sentences that were obviously the most
content-laden. One possible extension of our work
could be using both models to filter this dataset for
”diverse” documents (those documents with sig-
nificantly different summaries for the neural and
combinatorial models), which would be a useful
comparison metric for future research in extractive
SDS.

Besides the short articles, the dataset also con-
tains a lot of noise. Sentence boundaries are
fairly imprecise, and a lot of metadata is present
at the beginning of some articles, which causes
SummaRuNNer to erroneously choose semanti-
cally empty pseudo-sentences. Of course, this

might simply be exposing a legitimate issue with
SummaRuNNer’s over-reliance on the ”First-K”
heuristic. In addition to the metadata noise, the
abstractive ”summaries” aren’t really summaries.
The bullet points were meant to be read alongside
the document – readers either read only the bul-
let points or the bullet points and the full article.
Thus, authors often included novel information
in the bullet points, which no extracted summary
could replicated. To illustrate an accurate perfor-
mance ceiling, we evaluate ”Oracle” scores along-
side our other models, where the Oracle summary
is derived from the generated extractive labels.

5.3 Australian Law Database

We also make use of a database containing around
4,000 legal cases from the Australasian Legal In-
formation Institute (ALII). This database was pro-
cessed and hosted on the UC Irvine Machine
Learning Repository3. Similar to Galgani et al.
(2012), we treat the ”catchphrases” as abstrac-
tive summaries. These catchphrases are designed
similarly to tags – they allow for more powerful
search tools. In contrast to the CNN/DailyMail
dataset, the catchphrases are very short (often just
a few words), but there are many more of them (8
per document). This smaller dataset is less noisy,
as the catchphrases never contain novel informa-
tion. The documents themselves are much longer,
with a few outlier documents containing more than
10,000 sentences. This dataset allows us to test
two aspects of the models:

1. The ability to generalize to a different target
domain – there aren’t enough legal cases to
retrain the models.

2. How drastically the runtime changes with
larger documents.

5.4 Pre-processing

Since both datasets only contain abstractive sum-
maries, we designed a system to assign each sen-
tence an extractive label. Our method was similar
to Nallapati et al. (2017) in that we tried to greed-
ily maximize the ROUGE score. Our algorithm to
generate extractions was as follows:

1. Parse a single document and split into ab-
stractive summaries (highlights) and actual
content.

3https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports

https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports

2. Post-process sentences by doing an addi-
tional regex split on whitespace with punctu-
ation lookback. Numerous sentences in the
original dataset were not delimited by new
line characters, so this is a necessary step to
ensure our model deals with individual sen-
tences.

3. Tokenize each sentence and highlight using
the NLTK MosesTokenizer.

4. Build unigram, bigram, and trigram sets from
the sentences and highlights.

5. Count matches between sentences and high-
lights, giving more weight to bigram and tri-
gram matches.

6. Sort sentences by score.

7. Let S be the number of sentences and H
be the number of highlights. The algorithm
picks up to min(1,floor(S/2)) sentences as
part of the summary. It picks at least the
H sentences with the highest scores. After
sentence H is picked, subsequent sentences
will only be picked if their score was at least
(80 + 3 ∗X)% of the previously-picked sen-
tences score, where X is the number of sen-
tences currently picked.

This is a metric designed to pick the most likely
sentences roughly in accordance with the size of
the abstractive summary, while also allowing for
particularly similar sentences to both be chosen
for completeness. Due to the noise in the dataset
described previously, the extracted summaries are
not always ideal. However, we find that they
are generally reasonably close to what human-
selected summaries might be, and are suitable for
our purposes.4

6 Results

This section will first explain our methodology
and experimental setup, then present the results of
our experiments.

6.1 Methodology
One of the challenges we faced was determining
the length of the summaries. We tested the obvi-
ous approach of matching the Oracle’s summary

4We also used a stoplist and tokenizer to preprocess the
text. We tried lemmatization, but it had a negative impact on
performance.

Table 1: Full results on the CNN/DailyMail test
set with summary lengths set to three sentences.
Runtimes reported in milliseconds.

Model ROUGE-1 ROUGE-1 F1 ROUGE-2 Runtime
First-K 0.31104 0.24458 0.12518 35241
U.G. MCP6 0.42982 0.25597 0.13335 37093
MCP 0.44425 0.28429 0.15821 61398
Neural 0.45483 0.31671 0.18239 1048249
Oracle 0.68059 0.37807 0.38756 N/A7

lengths, but such an approach wouldn’t generalize
to unlabelled text, so we also tried various arbi-
trary summary lengths (3, 6, or 9 sentences). We
evaluated our models with ROUGE-1 Recall, F1,
and ROUGE-2 Recall using the JRouge library5.
Our primary metric was ROUGE-1 Recall. We
also timed our models – since our MCP imple-
mentation was in Java, we ran 3 dummy runs to
warmup the JVM, then timed and averaged the re-
sults of the next 10 runs.

We tested 5 models:

1. First-K: This model simply chose the first K
sentences, where K is the length of the sum-
mary. This provided an extremely simple
baseline approach.

2. Unweighted Greedy MCP: This model re-
duces summarization to MCP, but doesn’t use
weights and solves using a greedy algorithm
instead of an ILP solver.

3. MCP: This model uses the learned weights
discussed in section 3 and uses GLPK 4.5 to
solve the MCP optimally.

4. Neural: This is the ATTN-RNN version of
SummaRuNNer discussed in section 4 (the
various neural architectures explored had al-
most identical performance).

5. Oracle: This model uses the extractive labels
obtained from the system discussed in sec-
tion 5. This serves as a performance ceiling
to compare with the other models.

6.2 CNN/DailyMail Test Set
We compared our models on the 10,000 docu-
ment CNN/DailyMail test set. All runtimes are
reported in milliseconds. As Tables 1/2 show,

5https://bitbucket.org/nocgod/jrouge/wiki/Home
6Unweighted Greedy MCP
7Oracle summaries are generated in pre-processing

https://bitbucket.org/nocgod/jrouge/wiki/Home

Table 2: Full results on the CNN/DailyMail test set
with summary length matching the Oracle sum-
mary length. Runtimes reported in milliseconds.

Model ROUGE-1 ROUGE-1 F1 ROUGE-2 Runtime
First-K 0.410247 0.252497 0.174275 35048
U.G. MCP 0.533134 0.237928 0.183332 38967
MCP 0.547118 0.262058 0.207809 71355
Neural 0.5397474 0.292089 0.229425 1145616
Oracle 0.68059 0.37807 0.38756 N/A

Table 3: ROUGE-1 Recall scores as summary
length increases. Summary length indicated in
number of sentences.

Summary Length
Model 3 6 9
First-K 0.31104 0.45118 0.58371
U.G. MCP 0.42982 0.58056 0.66126
MCP 0.44425 0.59074 0.66616
Neural 0.45483 0.58693 0.66516

the combinatorial model was much faster than the
neural model, processing roughly 163 articles per
second vs the neural model’s 9 articles per sec-
ond. Both models performed competitively, with
the neural model having a slight edge on shorter
summaries and the combinatorial model having a
slight edge on size-matched summaries. Note that
the neural model had a higher F1 score in both
experiments, demonstrating that the combinatorial
model prefers to choose longer sentences.

We also tested how the models’ ROUGE scores
increased as we increased the summary lengths.
Table 3 summarizes our results. The Oracle sum-
maries were on average 4.8 sentences, but neither
the MCP nor Neural models could match the Or-
acle’s ROUGE-1 even with twice as many sen-
tences.

6.3 Australian Legal Cases

Lastly, we tested our non-baseline models on the
Australian Legal Case database, to test asymptotic
runtimes as well as the ability to generalize. The
neural model was not retrained and the MCP word
weights were not re-learned. Table 4 summarizes
our results. The Oracle F1 score is much lower in
this dataset than the previous one, because the ab-
stractive summaries (”catchphrases”) were much
shorter, so the precision was much lower. As ex-
pected, the MCP model generalizes better, as only
one part of it is learned (word weights). The neural
model relies heavily on domain specific training
data.

7 Visualizer

In order to more easily analyze the results we col-
lected, we built a summary visualizer. We com-
bined the relevant scores and metadata into a set
of JSON files and put together a web-based visu-
alizer8.

The visualizer shows scores for each sentence
when hovered. Content, salience, novelty, ab-
solute positional importance, relative positional
importance, overall probability, and MCP model
score are all included. The correct sentences for
the summaries are highlighted in yellow, and the
current selection is highlighted in green. The left
column shows the sentences chosen by the RNN-
RNN with Attention model, the center column
shows the entire document, and the right column
shows the sentences chosen by the MCP model.
The visualizer also counts the number of matches
made by each model.

8 Error Analysis

In order to fulfill our goals of understanding the
strengths and weaknesses of neural and non-neural
single document summarization models, we ran
each model on the dataset we created. Besides the
output labels that each model generated, we also
collected information on the model’s internal cal-
culations. For the neural model we extracted each
of the component scores used to calculate a proba-
bility for each sentence. For the maximum cover-
age model, we extracted the final scores associated
with each sentence9.

8.1 Neural Model
In order to better understand the weaknesses of the
neural RNN-RNN with Attention model, we com-
puted the content, salience, novelty, and positional
scores for each sentence in the dataset. We took

8Available at https://rococode.github.io/primeapeNLP
9These scores represent the combined weight of all unique

words in the sentence, but if another sentence is already cho-
sen, the weights of this sentence would change. This isn’t
represented in the visualizer, but explains why the top K high-
est sentences aren’t chosen.

Table 4: Non-baseline model performance on the
legal case dataset. Runtimes listed in milliseconds.

Model ROUGE-1 ROUGE-1 F1 ROUGE-2 Runtime
MCP 0.56808 0.11932 0.17202 176708
Neural 0.54434 0.15179 0.18272 1015356
Oracle 0.66658 0.17366 0.32877 N/A

https://rococode.github.io/primeapeNLP

Figure 4: Our visualizer showing locations where the second sentence in the document is chosen and the
scores associated with that sentence.

these scores and were able to make some inter-
esting observations about common failures in the
neural model.

Preference for early sentences: The biggest
flaw in the neural model is the significant tendency
to pick sentences near the beginning of a docu-
ment. Many of the mistaken choices made by the
neural model tend to be when it chooses meta-
data at the beginning of a document, such as the
author name or timestamps. We believe that this
inaccuracy stems from the formulation of the fi-
nal classifier layer, which adds up the component
scores to calculate a probability. The position of
a sentence is influential several times in this sum,
as part of the absolute positional importance, rel-
ative positional importance, and novelty. Abso-
lute positional importance is an embedding-based
score that constantly decreases as the document
goes on. Relative positional importance is effec-
tively the same type of score, except with segmen-
tation into groups of sentences. Novelty, although
not directly related to position, is calculated as a
measure of redundancy of a sentence given the
summary up to that point. Since novelty is mea-
sured according to the current state, earlier sen-
tences tend to have better novelty scores since they
are more likely to contain novel information. This

is most clearly indicated by the fact that the first
sentence of any document has a novelty score of 0
(the other sentences all have negative novelty).

Inconsistency in cross-document scoring: We
noticed that our neural model is fairly inconsistent
across different documents. In particular, meta-
data sentences like ”By” and timestamps are often
scored very differently despite being in the same
position. While the model sometimes chooses
sentences like ”By” in the summary after allo-
cating very high probabilities to them (sometimes
upwards of 90%), it does not make this mistake
consistently. The fact that two documents both
starting with a single word sentence ”By” can as-
sign different scores to the sentence suggests that
the salience component of our classifier may neg-
atively affect the model’s comprehension of the
document.

8.2 MCP Model

The Maximum Coverage model has several weak-
nesses.

Preference for longer sentences: Since we
budget by sentences instead of words, our MCP
model always prefers longer sentences. This man-
ifests in the significantly lower F1 scores when
compared to the neural model. This weakness is

fairly easy to fix: we can modify our version of
MCP to be Budgeted Weighted MCP, which is also
easy to formulate as an ILP.

Weight Learning: Since we UNK words that
appear infrequently, unseen NEs10 are assigned a
low weight, instead of the high weight that pre-
viously seen NEs have. The same logic applies
to other features, such as Part-of-Speech (maybe
verbs are content-heavy), word position, etc. We
can fix this by adding more pre-processing (POS
tagging, NER, etc.) and learning feature weights
in our model.

Preference for Named Entities: One interest-
ing example we found through the visualizer was
an article on a baseball match. One sentence in the
article just listed out the names of the players on
the winning team, but had no important content.
This sentence had an extremely large weighted
sum, since some the Named Entities in the list
were fairly popular (high weight) and there was
a lot of them. One potential solution to this prob-
lem would be to compute the average weight of a
sentence, and pick the k best such sentences – but
this might make the model less robust to noise (an
erroroneous sentence like ”Donald Trump” would
have a much higher score than ”Donald Trump
signed one of the most important Executive Or-
ders”).

Overlapping Sentence Structure: Sentences
with a lot of important content, but only slightly
different structure will not all be chosen – after the
best such sentence is chosen, the others will all
have much lower weights if they used a lot of the
same words. This is an inherent weakness present
in any model that reduces to MCP.

9 Conclusions

In this work, we used two very different datasets
to compare neural models and a combinatorial
model. Finally, we built a visualizer tool which
simplifies the process of comparing the and non-
neural decisions on the same document. From our
work, we observed weaknesses in both models.
The most prominent weaknesses were the exces-
sive importance of position in the neural model,
and the weaknesses surrounding Named Entities
in the MCP model.

10Named Entities

10 Future Directions

There are several aspects of this paper that could
be expanded upon. The most obvious improve-
ment would be to replace the MCP model with
the Compression/Anaphoricity model from Dur-
rett et al. (2016). This would be a more even test
– a SOTA11 neural model against a SOTA com-
binatorial model. Another point of improvement
would be using our error analysis to find adver-
sarial inputs. Since the two models have distinct
weaknesses, it should be possible to craft a set of
documents such that the neural model heavily out-
performs the MCP model on some instances and
vice versa. For instance, a document with content-
heavy sentences in the beginning, and a large list
of Named Entities at the end would be adversarial
to the MCP model and easy for the neural model.
Such a document set could be an interesting ”chal-
lenge” set for future researchers that would essen-
tially test the edge cases of single document sum-
marization.

We also think there is room for improvement
on the neural model’s final classification layer.
Currently, our model decodes the document rep-
resentation using the feed-forward classification
layer from Nallapati et al. (2017). We believe
that the formulation of probability is flawed due to
the simple adding of each component score (con-
tent, salience, etc.). Each of these components is
roughly on the same scale, as evident from our
collected data, and they are added together with-
out further weighting. This seems to be inaccu-
rate, since it seems unlikely that all of these com-
ponents should actually have the same degree of
influence on the final model. It may be interest-
ing and productive to add in an additional layer in
the classifier that performs an extra linear or non-
linear transformation on the component scores.
This would allow the model to learn precisely how
influential values like salience are supposed to be,
and may result in improved performance.

References

Mehdi Allahyari, Seyed Amin Pouriyeh, Mehdi Assefi,
Saeid Safaei, Elizabeth D. Trippe, Juan B. Gutier-
rez, and Krys Kochut. 2017. Text summarization
techniques: A brief survey. CoRR, abs/1707.02268.

Jianpeng Cheng and Mirella Lapata. 2016. Neural

11State of the Art

summarization by extracting sentences and words.
CoRR, abs/1603.07252.

Greg Durrett, Taylor Berg-Kirkpatrick, and Dan Klein.
2016. Learning-based single-document summariza-
tion with compression and anaphoricity constraints.
CoRR, abs/1603.08887.

Filippo Galgani, Paul Compton, and Achim G. Hoff-
mann. 2012. Combining different summarization
techniques for legal text.

Tsutomu Hirao, Yasuhisa Yoshida, Masaaki Nishino,
Norihito Yasuda, and Masaaki Nagata. 2013.
Single-document summarization as a tree knapsack
problem. In EMNLP.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. In AAAI.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. CoRR, abs/1705.04304.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In ACL.

Hiroya Takamura and Manabu Okumura. 2009. Text
summarization model based on maximum coverage
problem and its variant. In EACL.

Huaipeng Zhao. 2018. Summarunner. https://
github.com/hpzhao/SummaRuNNer.

https://github.com/hpzhao/SummaRuNNer
https://github.com/hpzhao/SummaRuNNer

