
Trial and Error for Graph Properties∗

Aditya Saraf
University of Washington
sarafa@cs.washington.edu

Thomas Schneider
Harvey Mudd College
tschneider@g.hmc.edu

Aarthi Sundaram
University of Maryland
aarthims@umd.edu

Abstract

In a recent work, Bei, Chen and Zhang (STOC 2013) developed a trial and error model of computing
with applications towards constraint satisfaction problems. In this model, an oracle hides the input and
reveals some information about a violated constraint when given an unsatisfying assignment. For this
paper, we consider an oracle that reveals the index of the lexicographically-first violated constraint. We
model the problem of finding a certificate for a monotone graph property as a CSP and generalize this
problem to certificate extension. Given a monotone property, input graph and subset of edges, certificate
extension is the problem of determining if the given subset can be extended to a full certificate (a
minimal subgraph with the property) and returning such a certificate if possible. We show a polynomial
equivalence between certificate finding in graphs hidden by our “Lex-first” oracle and certificate extension
in the unhidden context. We consider the complexity of “Fixed Size” certificate extensions, where the edge
subset is of a limited size and show that certificate extension becomes harder with larger sizes. Finally,
we use matroids to partially classify which monotone graph properties are extensible in polynomial time.
These properties are easy in the hidden context, but our work in certificate extension is divorced from
the hidden context and so may be of independent interest.

1 Introduction

The goal of this paper is to make progress towards answering the question: What is the minimum amount
of information needed to determine if an n-vertex graph has a monotone graph property?

One approach to answering this question uses the decision-tree model and focuses on determining how
many edge queries are needed, in the worst case, to determine whether a graph has some monotone graph
property. This approach forms the study of evasiveness, a survey of which can be found in (Miller, 2013).
Our approach differs in that we’re more interested in the type of queries needed than the number. In Chapter
7 of her PhD thesis, Sundaram proposes studying this question by using the trial-and-error framework with
a Lex-first revealing oracle (Sundaram, 2017). As the question suggests, we keep the number of vertices,
n, fixed. Only the edges in the graph are unknown. In the trial-and-error framework, an algorithm is able
to propose certificates for some monotone graph property (the trial) and an oracle provides feedback about
some edge that is present in the certificate but not in the graph (the error). If there are multiple errors, the
Lex-first revealing oracle always returns the one that is lexicographically first in its internal list of edges.
It’s important to note that the algorithm is only allowed to propose valid certificates—these are certificates
which verify the property in at least one possible n-vertex graph.

The oracle we consider is adapted from a more general class of constraint satisfaction oracles. These oracles
maintain an internal list of constraints, which correspond in this case to edges not in the graph. Given this
framework, there are many possibilities for the type of information this oracle may reveal. It has been shown
that an oracle that only reveals the index of an arbitrary violated constraint is too weak, whereas an oracle

∗Working Draft, Last Updated December 2018

1

mailto:sarafa@cs.washington.edu
mailto:tschneider@g.hmc.edu
mailto:aarthims@umd.edu

that reveals the content of some violated constraint is too powerful (Sundaram, 2017). Hence, we focus on a
Lex-first revealing oracle, an oracle that keeps some internal list of edges not in the graph, the constraints,
and reveals the index of the lexicographically first violated constraint in this list.

2 Hidden Graph Properties

Definition 1. A graph property P is an isomorphism-closed set of graphs. Moreover, for all graphs G =
(V,E) and H = (V,E′) such that E ⊆ E′ we say that a property P is monotone increasing if G ∈ P implies
that H ∈ P.

In this work, since we are concerned only with monotone increasing properties we will use the terms “mono-
tone” and “monotone increasing” interchangeably. Note that the number of vertices is fixed—super graphs
can be formed only by adding edges. A monotone increasing graph property is completely characterized by
its certificates, minimal graphs that have the property. For example, if P is connectivity, the certificates
would be spanning trees. For a fixed n, one may think of the set of valid certificates for a property, CP , as
the certificates of P in the complete graph on n vertices, Kn. We introduce this concept because the oracles
we consider must be given a certificate C ∈ CP , rather than any arbitrary set of edges. Note that for any
nontrivial monotone P the complete graph must have the property. For each monotone graph property, we
associate multiple constraint satisfaction problems, the first of which is discussed extensively in Sundaram
(Sundaram, 2017).

2.1 Hidden CSPs for Monotone Graph Properties

To phrase a graph property as a constraint satisfaction problem, we express a property P as a series of
Boolean functions on

(
n
2

)
variables. Each variable corresponds to the presence of an edge in the complete

n-vertex graph. The original definition for an instance of the CSP associated with P, SP , uses the relation
set R = {Neg} to indicate which edges are not present in the graph. Note that there are at most

(
n
2

)
unique

constraints in an instance of SP . And as stated earlier, we restrict the set of possible assignments WP to the
set of certificates for P. The hidden version of this problem is denoted H-SP .

We will generalize SP to Sk−Id
P , to indicate that we’re allowing k occurrences of the Id relation. We have

that Sk−Id
P uses the relation set RId = {Neg, Id}, but instances of Sk−Id

P are further restricted to containing
exactly k constraints of type Id which must before the negation constraints. (Recall that constraints of type
Id correspond to edges which must be present in valid certificates.) Note that there can still be at most

(
n
2

)
unique constraints in an instance of this problem; k of them show the presence of some edge and there can
at most

(
n
2

)
− k remaining constraints that identify the absence of some edge.

In summary, we’re concerned with the following possibilities for CSPs based on monotone graph properties.
The former has been studied earlier, and the latter is our own addition.

1. Neg, · · · ,Neg

2.

k︷ ︸︸ ︷
Id, · · · , Id,Neg, · · · ,Neg

To solve these hidden problems, we’ll use a Lex-first oracle.
Definition 2 (Lex-first Oracle). A Lex-first oracle, denoted by OFIRST is an oracle that hides an instance
of a CSP, and when given a trial T, reveals the first violated clause index in that instance.

Note that the Lex-first oracle does not reveal the content of the violated clause, but merely the index.
Further, because the possible assignments are restricted to valid certificates, it is not possible in general to

2

learn the structure of the graph.1

The hidden versions of the above CSPs that have access to a Lex-first oracle will be denoted as H-P and
H-P-k-Id. We also define the following classes of problems.

Definition 3 (Hidden Graph Properties). H is the set of all H-P for any monotone graph property P.
Definition 4 (Fixed Id Hidden Graph Properties). H-k-Id is the set of all H-P-k-Id for any monotone graph
property P.

For an instance of H-P-k-Id, let E′ be the set of edges corresponding to the Id constraints. In practical
terms, an algorithm that solves this instance of H-P-k-Id will return a certificate for P if one exists in the
hidden graph that extends E′ (e.g. E′ ⊆ T). Otherwise, the algorithm will return unsat.

2.2 Relevant Problems About Monotone Graph Properties

This section introduces several problems related to monotone graph properties. Though these problems are
divorced from the hidden setting, we’ll show later their relationship to Hidden CSPs.

Definition 5 (The Certificate Finding Problem). Given a monotone increasing graph property P, the P-CF
problem asks: Given a graph G = (V,E), return a certificate T for P such that T ⊆ E.

This problem is what one would expect of a certificate finding problem—the goal is to simply find a certificate
for a specified property in a given graph.

Definition 6 (The Certificate Extending Problem). Given a monotone increasing graph property P, the
P-CE problem asks: Given a graph G = (V,E), and a set of edges E′ ⊆ E, return a certificate T for P such
that E′ ⊆ T ⊆ E.

The problem is a generalization of the previous one, since we can always take E′ to be the empty set. Given
a partial assignment, E′, the goal of this problem is to determine whether this partial assignment can be
extended to a valid certificate of the property in the given graph. For parity with our hidden problem
definition, we also define a related problem.

Definition 7 (Fixed Size Certificate Extending Problem). Given a monotone increasing graph property P,
the P-k-CE problem asks: Given a graph G = (V,E), a positive integer k, and a set of edges E′ ⊆ E where
|E′| ≤ k, return a certificate T for P such that E′ ⊆ T ⊆ E.

Note that k need not be constant with regard to the input - k can be a factor of n.

Though P-CF, P-CE and P-k-CE are defined in terms of a specific monotone graph property, we can also
think about them as classes of problems, which give the following characterizations:

Definition 8 (Certificate Finding). CF is the set of all P-CF for any monotone graph property P.
Definition 9 (Certificate Extending). CE is the set of all P-CE for any monotone graph property P.
Definition 10 (Fixed Size Certificate Extending). k-CE is the set of all P-k-CE for any monotone graph
property P.

Note that for k = 0, k-CE = CF. Further, if P-CE is efficiently solvable, then P-k-CE will certainly be
efficiently solvable for any k. We define these separate classes because for some problems (as we show later),
P-k-CE is easy only for constant k (and thus P-CE is easy).

1If any set of edges could be proposed, it would be trivial to learn the entire graph in polynomial time by suggesting edges
one at a time.

3

3 The Difficulty of Hidden Problems

In earlier work, Sundaram proved that H ≤p 1-CE (Sundaram, 2017). Our initial goal was to provide a
polynomial equivalence (not merely a one-way reduction) between graph problems in the hidden setting and
some class of problems in the non-hidden setting. We refer to this as a transfer theorem. As a first step
towards this goal, we bound the complexity of hidden graph problems between two related problems in the
classical setting. We aim to prove the following theorem.

Theorem 3.1. For any k ∈ N, k-CE ≤p H-k-Id ≤p (k + 1)-CE.

We prove the two parts of this theorem separately.

Lemma 3.2. For any k ∈ N, k-CE ≤p H-k-Id.

Proof. This direction is fairly straightforward to see from the definitions. Given a property, an algorithm
that can find (through oracle access) a certificate with (at most) k fixed edges in a hidden graph can surely
be used to find a certificate with some set of at most k edges in a known graph. The only difference between
these two classes of problems is the hidden graph; so clearly with more information, the problem becomes
easier. To prove this, we simply simulate an oracle for an algorithm that solves the hidden problem.

Let P be an arbitrary monotone graph property and let (G = (V,E), E′ = {e∗1, . . . , e∗k}) be the input to
the P-k-CE problem. Let A be an algorithm that solves the H-P-k-Id hidden CSP and let e1, . . . , em be an
arbitrary ordering of the edges missing from G (i.e edges in Kn \G). We define a CSP with m+k constraints
where C1 = e∗1, . . . , Ck = e∗k and Ck+1 = e1, . . . , Ck+m = em. Our algorithm works as such: Simulate a
Lex-first oracle for A by returning the index of the first violated constraint and output what A outputs.
Because A solves the hidden CSP H-P-k-Id, it must eventually propose a certificate T such that e∗i ∈ T for
all i ∈ [k] and ej 6∈ T for all j ∈ [k + 1, . . . , k + m]. If A rejects the instance, then no certificate can exist
in the original graph. Thus, we solve the P-k-CE problem with only an O(|E|) (where |E| = m, as E is the
set of edges not in G) running time overhead to construct the list of constraints.

Lemma 3.3. For any k ∈ N, H-k-Id ≤p (k + 1)-CE.

We prove this for an arbitrary monotone graph property P by designing an algorithm similar to Sundaram’s
Lex-first algorithm (Sundaram, 2017). Our new algorithm has two general phases. First, we learn as much
as we can about the Id constraints by narrowing down an initially exhaustive set of candidates. Then, we
use a slightly modified version of the Lex-first algorithm that ensures that the Id constraints are present in
all considered certificates.

The original algorithm keeps track of a set of “critical edges” and ensures that it never removes these edges
when modifying a trial. This set is defined as:

Crit := {e ∈ G|G \ {e} does not have a certificate for P}

where G the current guess for the graph. Since we want the algorithm to treat the edges required by the
identity constraint as critical (in the sense that they are never removed), we must propose a set of queries to
deduce as much as possible about the Id constraints C1, . . . , Ck. The complicating factor is that we can only
propose valid certificates to the oracle—we cannot simply propose each edge one at a time. This complication
also means that we cannot guarantee that we learn the Id constraints. Suppose that, for some property P,
and some i < k, Ci = (1, 2) (where (i, j) denotes the edge from vertex i to j) and every certificate for P that
contains (1,2) also contains (3,4) and (5,6). Then, if Ci was one of these edges, no certificate proposed to the
oracle could differentiate between the three edges. The key idea is that in such a case, edges (3,4) and (5,6)
are de-facto required—they are also critical edges. We will have to treat these critical edges (denoted Crit∗i
for the critical set corresponding to the ith Id constraint) differently; it is possible to construct a certificate
without these edges (but such a certificate wouldn’t necessarily contain the Id-required edges), so we must

4

ensure that every certificate we examine contains all edges in all Crit∗i ’s. So we learn Crit∗1, . . . ,Crit∗k
corresponding to hidden ID constraints C1, . . . , Ck. Then, we can use the P-(k+ 1)-CE solver to ensure that
all certificates examined in Phase 2 contain all Crit∗i .

Now that the key ideas have been highlighted, we present the algorithm. We use solver A, which takes a
graph and an edge subset of size at most k + 1, producing a certificate for P that contains the subset.

Algorithm 1 A generalized lex-first algorithm for H-P-k-Id

1. Initialize global variables, setting G ← Kn, I ← ∅, Ie ← ∅, Crit ← ∅, and ∀j : [1, k + m], Ĉj ←
{e1, . . . , e(n2)},Crit∗j ← ∅.

2. for i← 1 to k do

2.1. Let R be a set that includes one arbitrarily selected edge from each of Crit∗1 . . .Crit∗i−1.

2.2. Choose (e, e′) from Ĉ′i. Find a certificate, T = A(Kn \ {e}, {e′} ∪ R). Get a violation j. If T cannot be

created for any (e, e′) ∈ Ĉ′i, go to Step 2.3.

• If j = i: Ĉ′i ← Ĉ′i ∩T.

• If j > i: Ĉ′i ← Ĉ′i ∩T.

• Repeat from Step 2.2.

2.3. Crit∗i ← Ĉ′i.

3. end for

4. Crit =
k⋃

i=1

Crit∗i , I ← {1, . . . , k}.

5. Let R be a set that includes one arbitrarily selected edge from each of Crit∗1 . . .Crit∗k. If no certificate can be

returned from A(G, R), abort and output unsat.

6. Find a certificate for P in G, T1 = A(G, R), get a violation j1 and set Ĉj1 ← Ĉj1 ∩T1.

7. If Ĉj1 ⊆ Crit, return unsat and abort. If Ĉj1 = {e”}, then Cj1 = (ē”), set j ← j1 and go to Step 9. Otherwise,

to create the next trial:

• Pick an edge, e ∈ Ĉj1 ∩T1 ∩Crit

• Find a certificate T2 = A(G \ {e}, R ∪ {e′}) by trying all e′ ∈ Ĉj \ {e′}.
• Set A← T1 \T2 and B ← T2 \T1.

• If no T2 can be created for any choice of e ∈ Ĉj1 ∩T1 ∩Crit, j ← j1 and go to Step 9.

8. Use T2 as the next trial, get the violation j2 and compare j1, j2:

• If j1 = j2, Ĉj1 ← Ĉj1 \A.

• If j1 � j2, Ĉj1 ← Ĉj1 ∩A.

• If j2 � j1, Ĉj2 ← Ĉj2 ∩B, j1 ← j2 and T1 ← T2.

• j ← min{j1, j2} and if |Ĉj | > 1, repeat from Step 7.

9. Update Ie ← Ie ∪ Ĉj , G ← Kn \ Ie, I ← {j′|Ĉj′ ⊆ Ie}, Crit← {e ∈ G|G \ {e} does not satisfy P}.
10. Repeat from Step 5 till the oracle returns yes.

Phase 1 of the algorithm is from step 1 to step 4. Phase 2 of the algorithm is from step 5 to step 10.

Our algorithm takes an iterative approach to the k-Id problem by discovering as much as possible about
each Id constraint, one at a time. The intuition behind the set R is that we need some way of ensuring that
we’re making progress — that every iteration of Step 2.2 removes an edge from the current Ĉ ′i or progresses

to the next constraint: Ĉ ′i+1. In other words, once the Crit∗i ’s are fixed in Step 2.3, they never need to be
modified. By requiring R in our certificates, we ensure that at iteration i (in Phase 1), we will not violate any
constraint Cj for j < i, which achieves the progress we just discussed. We now need to prove an important
property about the Crit∗i ’s.

5

Lemma 3.4. If T has e ∈ Crit∗i , and further T contains Crit∗1, . . . ,Crit∗i−1, T contains Crit∗i . Alterna-
tively, ∀e ∈ Crit∗i : Crit∗1 ∪ . . . ∪Crit∗i−1 ∪ {e} ⊆ T =⇒ Crit∗i ⊆ T

Proof. Suppose, for the sake of contradiction, for arbitrary i and for some certificate T that contains
Crit∗1, . . . ,Crit∗i−1, there exists e, e′ ∈ Crit∗i such that e ∈ T, but e′ /∈ T. This means that T can be re-
turned from A(Kn \{e′}, {e}∪R), as R is comprised of one edge from each of Crit∗1, . . . ,Crit∗i−1. Note that
when A(Kn\{e′}, {e}∪R) is first called, it need not return T. But since we only proceed to Step 2.3 when no
more certificates can be found, T must eventually be returned from some call to A(Kn \{e′}, {e}∪R). Thus,
either e or e′ would’ve been removed from Ĉ ′i (depending on the violation index, j). Since Crit∗i contains

the edges in Ĉi after Step 2.2, both e, e′ cannot exist in Crit∗i . Thus, we have reached a contradiction.

Since we always include R in our certificate, by Lemma 2.4, our certificate will never violate any Ci : i < j.
Note also that |R| ≤ k − 1, so A, which can solve for subsets of size at most k + 1, will always be able to
solve for {e} ∪R.

For our proof, let C1 = e∗1, . . . , Ck = e∗k.

Proof of Lemma 3.3. To prove this theorem, we first prove that every iteration of Step 2.2 decreases |Ĉi|
while ensuring Ci ⊆ Ĉi, for arbitrary i ∈ [1, k]. We present an inductive argument (inducting over the
number of iterations): at first, Ĉi contains all edges, so Ci ⊆ Ĉi. For the inductive step, there are two cases.
If j = i, then T does not contain e∗i , which means that Ci ⊆ Ĉi∩T. Further, since e′ ∈ Ĉi∩T, |Ĉi| decreases.

If j > i, then T does contain e∗i , which means that Ci ⊆ Ĉi∩T. Further, since e ∈ Ĉi∩T, |Ĉi| decreases. As

we showed earlier, j will never be less than i. So Step 2 decreases |Ĉi| while retaining the invariant. Thus,
in Step 2.3 for some iteration i, Ci ⊆ Ĉi = Crit∗i .

Now, we prove that, ∀i ∈ [1, k], e∗1, . . . , e
∗
k will be present in every certificate in Phase 2 and that we don’t

exclude from consideration any certificate that contains e∗1, . . . , e
∗
k. In Phase 2, we require all certificates to

have a nonempty intersection with R. This, combined with Lemma 2.4, ensures that every certificate contains
all edges in Crit∗1, . . . ,Crit∗k. Since Ci ⊆ Crit∗i , this ensures that every certificate contains e∗1, . . . , e

∗
k.

Further, by Lemma 2.4, any certificate that contains e∗1, . . . , e
∗
k must also contain Crit∗1, . . . ,Crit∗k. Thus,

by requiring certificates to contain R, we are not excluding any certificate that contains e∗1, . . . , e
∗
k.

Now we address the small change made to Phase 2 of the algorithm to switch from the P∩ model to the
P-CE model. In Step 7, in order to find a certificate that intersects Ĉj \{e} with our P-(k+1)-CE solver, we

simply try to include every edge in Ĉj , one at a time. Only if no such edge exists do we proceed to Step 9.

Finally, we prove the complexity of our algorithm. Let T be the runtime of A. Note that Step 2.2 will always
remove at least one edge from Ĉi, so it will take at most O(n2) iterations of Step 2.2 to move to Step 2.3.
Each iteration of Step 2.2 takes time O(T). So each iteration of Step 2 takes time O(Tn2), for total time
O(Tkn2) spent in Step 2. Finally, Step 4 takes at most O(k) time, so the total time complexity for Phase 1
is O(Tkn2). Finally, our modification to Phase 2 adds only polynomially more work, as each Ĉi can have at
most O(n2) edges. So, our algorithm is in poly(n)-time when T = poly(n).

Now we’ll combine the above results into a transfer theorem.

Theorem 3.5. H =p P-CE

Proof. Note that this theorem follows directly from Theorem 3.1. Any hidden problem must have some
number, k, of Id constraints. And for any k, there is a corresponding problem in (k+ 1)-CE that the hidden
problem reduces to. Since this problem in contained in CE, we have that H ≤p CE. The proof for the other
direction is symmetrical.

6

This transfer theorem allows us the consider the complexity of hidden graph properties in terms of the
certification extension problems on those properties. So, to determine which hidden graph properties are
easily solved, we explore the difficulty of certificate extensions. We first show that certificate extension gets
harder as we increase the size of the initial set (E′).

4 Fixed Size Certificate Extension

In this section, we’ll prove strict inclusion between Fixed Size Certificate Extension classes of varying size.

Theorem 4.1. For every k ∈ N, k-CE �p (k + 1)-CE.

To show this, we must only show this for a particular graph property, P-(k + 1)-CE is hard but P-k-CE is
easy. We first show that 0-CE �p 1-CE. Note that 0-CE is simply CF.

Lemma 4.2. Let P be the property that a directed graph has a simple path from s to t for some fixed vertices
s and t. Then the P-CF problem is in P while the P-1-CE problem is NP-Hard.

Proof. In order to find a simple path from s to t in polynomial-time (if such a path exists), we can use
breath-first search.

To show that the P-1-CE problem is NP-Hard, we will reduce it to the directed path-through-a-vertex
problem, i.e., the subgraph homeomorphism problem where the pattern graph is a path of length two. The
directed path-through-a-vertex problem is shown to be NP-Hard in (Fortune et al., 1980).

Let G be a graph and fix the distinct vertices s, t, and u, and let’s also assume we have access to an oracle
for the P-1-CE problem. We wish to determine if there exists a path from s to t that passes through the
vertex u. To do this, we loop over all possible edges (u, v) and query our oracle for a path from s to t that
uses the edge (u, v). If the oracle gives us a path, then this path must contain the vertex u. Moreover, any
path from s to t that passes through the vertex u 6= t must involve the edge (u, v) for some v. Thus, the
P-1-CE problem is NP-Hard.

4.1 The Size of the Incomplete Certificates Matters

We’ve shown in the last section that there exists a property for which P-0-CE is in P while P-1-CE is
NP-Complete (for convenience, we’ll say that we’ve found a property that separates P-0-CE from P-1-CE).
Next, we will show that for any natural number k there exists a property that separates P-k-CE from
P-(k + 1)-CE.

To do this, we’ll generalize the directed simple path problem. Let Pk be the property that a graph G has a
simple path from some fixed s to some fixed t that leaves at least k edges in G unused. Certificates for this
property will be paths from s to t along k edges in G. Checking whether a edge set T is a certificate can be
done in polynomial time using breath-first search to find a path of length |T | − k in the graph made by the
edges in T .

Theorem 4.3. The Pk-k-CE problem is in P.

Proof. First, we will give a polynomial-time algorithm that solves the Pk-k-CE problem. Assume we’re given
a graph G = (V,E), an edge set E′ of size at most k, and two vertices s and t. The algorithm works in three
parts:

1. Set T to be the edges in the shortest path from s to t. If no path exists, abort. If |T | > |E| − k, abort.

7

2. Let T ′ be T ∪ E′.
3. Keep adding edges in from E \ T ′ to T ′ until |T ′| = k + |T |. Output T ′.

Clearly, T ′ will be a certificate for Pk as well as T ′ ⊆ E. We’ll show that if this algorithm fails to find a
certificate for Pk from G then none exist. If the algorithm is unable to find a shortest-path from s to t then
there is no certificate for Pk because such a certificate would need to contain a path from s to t. Now assume
that |T | > |E| − k but there exists some certificate S for Pk from G. Then S can be decomposed into some
path P from s to t and a set of k other edges. So, |S| = |P |+ k. Since |S| ≤ |E|, we get that:

0 ≤ |E| − |S| < |T | − |P |.

But this would imply that |P | < |T |, contradicting the fact that T is a shortest path from s to t.

To prove the correctness of the third step, observe that |T | ≤ |P | and |P |+k ≤ |E| imply that |T |+k ≤ |E|.
Adding |T ∩ E′| to both sides and rearranging gets:

|T ∩ E′| ≤ |E|+ |T ∩ E′| − |T | − k = |E|+ (|T ∩ E′| − |T | − |E′|) = |E| − |T ∪ E′| = |E \ T ′|.

This means that there are enough edges in E \T ′ to extend T ∪E′ into a full certificate. Thus, our algorithm
will always provide an output if a certificate exists for Pk from G that uses all of the edges in E′.

The proof for Theorem 4.3 relies heavily on the fact that |E′| = k, the number of edges required in a cer-
tificate outside of the path from s to t. To prove Theorem 4.4, we will reduce the P1-0-CE problem to the
P(k+1)-k-CE problem.

Theorem 4.4. The P(k+1)-k-CE problem is NP-Complete.

Proof. Assume that we have a solver for P(k+1)-k-CE problems. Let G = (V,E) and E′ = {e∗} be an
instance of the P1-0-CE problem we wish to solve. We will modify G by adding 2k vertices and k edges as
such:

Gmod = {V ∪ {u1, v1, u2, v2, . . . uk, vk},
E ∪ {(u1, v1), (u2, v2), . . . , (uk, vk)}}

where ui and vi are all new vertices. Now we will show that we can solve the P1-0-CE problem by posing
Gmod and E′mod = {e∗, (u1, v1), (u2, v2), . . . , (uk, vk)} to our solver for P(k+1)-k-CE problems. We will show
that the G,E′ instance of the P1-0-CE problem has a solution if and only if the Gmod, E

′
mod instance of the

P(k+1)-k-CE problem has a solution.

First, let’s say that T is a solution to the G,E′ instance of the P1-0-CE problem. Then Tmod = T ∪
{(u1, v1), (u2, v2), . . . , (uk, vk)} is a solution to the Gmod, E

′
mod instance of the P(k+1)-k-CE problem. This

is because E′mod = {e∗, (u1, v1), (u2, v2), . . . , (uk, vk)} ⊆ T since e∗ ∈ T and Tmod and Tmod contains a path
from s to t since T does.

Now assume that we have that our P(k+1)-k-CE problem-solver gives us Tmod as a solution. Since Tmod must
necessarily contain {(u1, v1), (u2, v2), . . . , (uk, vk)}, we can create T = Tmod \{(u1, v1), (u2, v2), . . . , (uk, vk)},
which will only have one edge in it, e∗. Since none of the vertices in {u1, v1, u2, v2, . . . uk, vk} are connected
to s or t, they can’t appear in a path from s to t. Thus, T contains a path from s to t. Moreover, T contains
e∗ since Tmod contains e∗ and it wasn’t removed. So T is a solution to the P1-0-CE problem. Thus, our
reduction is complete.

5 When is Certificate Extension Efficient?

We’ve shown in the previous sections that we’re not always able to efficiently extend certificates for efficiently-
certifiable graph properties. We’ll now look at some monotone graph properties, and determine if their

8

corresponding P-CE problems are solvable in polynomial time. For brevity, we’ll say that a graph property
is extensible if the related P-CE problem is in P and we’ll say that a property is k-extensible if the related
P-k-CE problem is in P. Extensible properties are of particular interest because they imply that the
corresponding hidden problem is easy to solve.

In each of the following sections, G = (V,E) will be a (un)directed graph for which we wish to find a
certificate. The partial certificate we wish to extend will be E′.

5.1 Connectivity and Spanning Trees (Undirected Graphs)

Let PCon be the property that a graph is connected. In this section, we’ll show that PCon is extensible.

Notice that the set of certificates CCon for PCon is the set of all spanning trees. While one characterization of
spanning trees is that they are minimal connected graphs, spanning trees can be equivalently characterized
as being maximal acyclic graphs. This duality forms the basis for why partial-certificates connectivity are
easily expendable.

Given a set of edges E′, determining whether E′ is acyclic can be done in polynomial time. Extending E′

is simple: we can simply keep adding edges from E \ E′ to E′ such that E′ is always a forest. If E′ ever
contains n− 1 edges, it must be a spanning tree, and we’re done.

The reason this greedy algorithm works is because the CCon is the set of bases for a matroid—in particular,
they form the maximal independent sets in the graphic matroid of a complete graph.

5.2 Perfect Matchings (Undirected Graphs)

Let PPM be the property that a graph has a perfect matching. In this section, we’ll show that PPM is
extensible.

Then the set of certificates CPM for PPM will be perfect matchings. Given a set of edges E′, we first determine
whether E′ is a matching by determining whether there is some vertex in V that is adjacent to multiple edges
in E′. Now we want to determine whether E′ is able to be extended to a perfect matching—a matching of
size n/2. We start by defining V ′ = {v′ ∈ V : (u′, v′) ∈ E′ for some u′ ∈ V }, all the vertices involved in the
matching. Clearly, E′ is a perfect matching for the subgraph of G restricted to vertices in V ′. Now consider
the modified graph H, which is the subgraph induced when the vertices V ′ are removed from G. We claim
that H has a perfect matching if and only if G has a perfect matching if and only if G has a perfect matching
that is an extension of E′.

Thus, we’ve reduced the PPM-CE problem to the PPM problem, which is known to be in P by (Edmonds
(1965); Micali and Vazirani (1980)).

5.3 Vertex-disjoint Cycle Cover (Undirected Graphs)

Let PCC be the property that a graph has a cycle cover.

Then the set of certificates CCC for PCC will be cycle covers.

A vertex-disjoint cycle cover can also be found in polynomial time due to a common reduction to bipartite
perfect matching, which we include for completeness. Given a graph G = (V,E), we construct bipartite
graph G′ = (V ′, E′) with V ′ = L ∪ R by duplicating every vertex v ∈ V into vl ∈ L and vrinR. Then for
edge (u, v) ∈ E we add (ul, vr) to E′. Thus a perfect matching will choose exactly two edges for every vertex
to create cycles that span the graph.

9

We’re able to reduce the PCC-CE problem to the PCC problem as such by performing the following operation.
Let H be the graph obtained by replacing every edge (u, v) ∈ E′ with two edges (u, x) and (x, v) where x
is a new vertex. Since a cycle cover must cover every vertex, we must have that both (u, x) and (x, v) are
included in a cycle cover, since they’re the only edges adjacent to x. Given a cycle cover for H, we can
produce a cycle cover for G containing all the edges in E′ by collapsing all the x’s we’ve introduced.

5.4 Undirected Path

Let PUP be the property that an undirected graph has a path from some fixed s to some fixed t. We will
show that PUP is k-extensible for every constant k but is not extensible in general. First, to show that PUP

is k-extensible for every constant k, we reduce PUP-k-CE to the Disjoint Paths problem, which is in P for
constant k.2

Definition 11 (The Disjoint Paths Problem). Given a graph G and pairs (s1, t1), . . . , (sk, tk) of vertices of
G, find vertex-disjoint paths P1, . . . , Pk such that Pi connects si and ti.

Given a set E′ = {(u1, v1), . . . , (uk, vk)}, consider the various potential paths from s to t that intersect these
edges. In particular, consider the possible orderings of vertices u1, v1, . . . , uk, vk along the path. There are
k! permutations of intermediate edges, and for each ei, we could either start at ui or vi. So, there are k! ∗ 2k

possible orderings of the vertices—since k is constant, this number of also constant. Given an ordering,
say (s, x1, x2, . . . , x2k, t), where x1, . . . , x2k is the ordering of the specified vertices, we can reduce to the
problem of finding vertex disjoint paths between pairs (s, x1), (x1, x2), . . . , (x2k, t). Note that the number of
pairs is polynomial in k, and thus also constant. And since the number of orderings is also constant, PUP is
k-extensible for constant k.

Now we will show that PUP-CE is NP-hard via reduction from Hamiltonian Path, or HAMPATH. HAM-
PATH is the problem of determining if a given graph has a path that visits every vertex exactly once.
We provide a poly-time function, f , that converts instances {G1 = (V1, E1)} of HAMPATH to instances
{G2 = (V2, E2), E′ ⊆ E2, s, t} of PUP-CE. We then prove that x ∈ HAMPATH if and only if f(x) ∈ PUP-CE.3

f modifies the graph as follows. First, we add s, t to V2. Then, for every vertex v ∈ V1, we construct
two vertices in V2: va, vb. We add the following edges to E2: (va, vb), (s, va), (vb, t). Then, for every
(u, v) ∈ E1, we add (ub, va) to E2. Finally, E′ = {(va, vb) : v ∈ V1}. So the final instance for PUP-CE is
{G2 = (V2, E2), E′, s, t}. This function is clearly computable in polynomial time.

Suppose x ∈ HAMPATH, where x = {G1 = (V1, E1)}. Let the Hamiltonian path be vi1 , . . . , vin , where
i1, . . . , in is the order the vertices are visited in the path. Then, there is a path in G2 between s and t that
uses all vertices in E′: ((s, vai1), (vai1 , v

b
i1

), (vbi1 , v
a
i2

), . . . , (vbin , t)). Note that there is an edge from s to any vai
and vbi to any t, so the first and last edges exist. Then, there is an edge from every vai to vbi . Also, there
is an edge from every vbij to vaij+1

, since (vij , vij+1
) ∈ E1. So, all edges in our path exist in E2. Note also

that since the Hamiltonian path doesn’t repeat any vertices, this path doesn’t repeat vertices. Finally, since
every vertex is visited in the Hamiltonian path, all edges in E′ are used in this path. So, f(x) ∈ PUP-CE.

Suppose f(x) ∈ PUP-CE, where x = {G2 = (V2, E2), E′, s, t}. This means that there exists a (simple) path
between s, t that uses all (vai , v

b
i). Note that such a path corresponds to a Hamiltonian path in the original

graph: once any vai , v
b
i are visited, they may not be visited again in the simple path. Further, since all

(vai , v
b
i) are in the path, all vertices are visited. Lastly, there exists (vbi , v

a
j) ∈ E2 only when (vi, vj) ∈ E1.

Thus, x ∈ HAMPATH.

Thus, HAMPATH ≤p PUP-CE; and since HAMPATH is NP-Hard, so is PUP-CE.

2An O(n3) solution to the decision version of this problem was originally found by (Robertson and Seymour, 1995), but
(Kawarabayashi et al., 2012) improves this to an O(n2) solution to the search problem, which we use.

3This is a slight abuse of notation since PUP-CE is a search problem, not a decision problem.

10

6 Certificate Extensions and Matroids

Now that we’ve seen some examples of extensible properties, we will try to form sufficient and necessary
conditions for when a property is extensible. Since extending a certificate is at least as hard as finding a
certificate, we can restrict our consideration to properties that are easily found. One common trait about
the extensible properties we’ve seen is the existence of a matroidal representation.

We consider forming an independence system from P by setting the bases of the independence system to be
the certificates of P. Recall that the certificate set, CP , is the set of all certificates of P in Kn.4 We denote
this independence system S(P).
Theorem 6.1. If S(P) is a matroid, then P is extensible.

Proof. Note that an independence system is a matroid if we have the exchange property :

If A and B are two independent sets and A has more elements than B, then there exists x ∈ A \B such that
B ∪ {x} is also independent.

We are given as input G = (V,E), E′ ⊆ E. We will also use O to denote the matroid’s independence
oracle. We first check that E′ is independent, rejecting the instance if it’s dependent. Since the bases are
the certificates, E′ is dependent iff it’s not a subset of any certificate (which makes it impossible to extend
E′ to a valid certificate). As we said earlier, we are considering properties P for which P-CF is easy. So
we first find any certificate T in G. Then, we loop over all elements e from T \ E′ until O(E′ + e) returns
independent. Then, E′ ← E′ + e and we repeat. Due to the exchange property, this process is guaranteed
to terminate with E′ equal to some basis of the matroid. By construction, the basis is a certificate. Since
the edges in T must be in the graph, the augmented E′ consists of edges in the graph. Thus, the final E′

is a valid solution to the problem. For the time complexity, note that we find T in polynomial time and we
loop over at most |T \ E′| elements.5 So, we have shown that P is extensible.

The intuitive idea behind the algorithm is that any independent set can be augmented to a basis by choosing
elements from another basis (via the exchange property). Since finding a certificate is easy, we can quickly
find a basis, and thus quickly augment E′ if possible. We now turn to more complicated variants.

6.1 The Intersection of Two Matroids

Now consider the case where the certificate set C for a monotone graph property P corresponds to the max-
imum sets of a matroid intersection. Formally, we write C = {T ∈ I1 ∩ I2 : |T | = m} where (E, I1) and
(E, I2) are matroids and m = max{|T ′| : T ′ ∈ I1 ∩ I2}. We’ll show that if a property P is of this form,
then it is extensible. As a subroutine, we will use the Weighted Matroid Intersection Problem, known to be
solvable in polynomial time by (Lawler, 1975). Given two matroids over the same ground set, and a weight
function on the ground set, a Weighted Matroid Intersection algorithm returns a set independent in both
matroids of maximal weight. By choosing the weight function that weighs all elements in E′ and E \ E′
equally relative to each other, but such that any element of E′ is preferred over all elements in E \E′, we’re
able to efficiently extend partial-certificates.

Theorem 6.2. If P is a property whose certificate set is C = {T ∈ I1 ∩ I2 : |T | = m} for some matroids
(E, I1) and (E, I2) where m = max{|T ′| : T ′ ∈ I1 ∩ I2}, then the P-CE problem is in P.

Proof. Suppose P is a property whose certificate set is C = {T ∈ I1 ∩ I2 : |T | = m} where (E, I1), (E, I2),
and m = max{|T ′| : T ′ ∈ I1 ∩I2}. Additionally, suppose we’re given a graph G = (V,E) and a set of edges

4As an independence system, any subset of a certificate is considered ”independent”.
5We assume that the independence oracle is efficient.

11

E′ and are asked to produce a certificate T such that E′ ⊆ T ⊆ E or to correctly assert that none exists.
We’ll produce such a T (if one exists) as follows.

Let k = |E \ E′|, k′ = |E′|, and the weight function w : E → R be defined as such:

w(e) =

{
1 e ∈ E \ E′

k + 1 e ∈ E′

Run the Weighted Matroid Intersection Algorithm on (E, I1), (E, I2), and w. Suppose it returns an edge
set S. We calculate

∑
e∈S w(e) and if

∑
e∈S w(e) ≥ k′(k + 1) and |S| = m we return S; otherwise, we assert

that no such T exists.

Now we must show: 1) that if our algorithm returns a T then E′ ⊆ T ⊆ E and T ∈ C and 2) that if no such
T exists then our does not return a T . Clearly T will be an element of I1 ∩ I2, will have m elements, and
will be subset of E. Now suppose that our algorithm returns T and E′ is not a subset of T . Then∑

e∈T
w(e) ≤ (k′ − 1)(k + 1) + k = k′k + k′ − k − 1 + k = k′k + k′ − 1 = k′(k + 1)− 1

which contradicts the fact that our algorithm only returns sets of total weight at least k′(k + 1).

Now suppose that there exists some T such that E′ ⊆ T ⊆ E, T ∈ I1∩I2, and |T | = m. Then
∑

e∈T w(e) =
k′(k + 1) +m− k′ so the Weighted Matroid Intersection Algorithm will find a S of total weight at least that
of T and our algorithm is guaranteed to return something.

7 Conclusions and Future Work

We started this work trying to understand which hidden graph properties are easily solvable. We first
developed a transfer theorem, which led to the question of when certificate extension is easy. We tried to use
matroids to characterize which properties are extensible. Through a combination of examples and theorems,
we proved the following statements:

1. For all properties P if the independence system with bases corresponding to the certificates of P is a
matroid, then P is extensible.

2. For all properties P if the certificates of P are the maximal independent sets of two matroids, then P
is extensible. We call properties that satisfy this or the previous claim “matroidal” properties.

3. There exists a property, namely perfect matching in a general (non-bipartitite) graph, that is ex-
tensible, yet not apparently matroidal. We know that bipartite perfect matching can be framed as
the intersection of two matroids, but we conjecture that this isn’t the case for general graphs. This
illustrates the incomplete nature of our characterization.

4. There exists an apparently non-matroidal property (directed path) that is not extensible. Since we have
no substantive necessary conditions, we aren’t able to further characterize non-extensible properties.

5. There exists an apparently non-matroidal property (undirected path) that is not extensible in general,
but is extensible for constant k. This is interesting because it is a concrete example of an non-contrived
property that gets harder with larger k (where k is the size of the E′ we seek to extend).

Note that we say ”apparently non-matroidal” as there may be a clever way to view the property as an
intersection of two matroids. As these statements illustrate, our CE clasification is incomplete—we’re
missing additional sufficient conditions and any substantial necessary conditions. This is a clear area for
future research.

Another area for future work is to explore more transfer theorems. We initially thought we could find a
transfer theorem between the hidden problem with no Id constraints and the certificate extension with k = 1.

12

One way of disproving this possibility would be to make the reductions in Theorem 3.1 tight (e.g. k-CE �p

H-k-Id �p (k + 1)-CE).

Lastly, our theorems in Section 6 relied on independence oracles for our given matroids. The natural question
this poses is for which matroidal properties is the independence oracle easily to construct. For example, for
connectivity, the independence oracle simply determines if a given set of edges contains a cycle. For all the
matroidal properties we’ve considered, the independence oracle is easy to construct—so one natural line of
research would be to prove this claim, or to classify which properties have simple independence oracles. This
classification would be closely related to classifying which properties are extensible.

13

References

J. Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–467, 1965.

S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem. Theoretical Com-
puter Science, 10(2):111 – 121, 1980. ISSN 0304-3975. doi: https://doi.org/10.1016/0304-3975(80)90009-2.
URL http://www.sciencedirect.com/science/article/pii/0304397580900092.

K. Kawarabayashi, Y. Kobayashi, and B. Reed. The disjoint paths problem in quadratic time. Journal of
Combinatorial Theory, Series B, 102(2):424 – 435, 2012. ISSN 0095-8956. doi: https://doi.org/10.1016/
j.jctb.2011.07.004. URL http://www.sciencedirect.com/science/article/pii/S0095895611000712.

E. L. Lawler. Matroid intersection algorithms. Mathematical Programming, 9(1):31–56, Dec 1975. ISSN
1436-4646. doi: 10.1007/BF01681329. URL https://doi.org/10.1007/BF01681329.

S. Micali and V. V. Vazirani. An O(
√
|V ||e|) algoithm for finding maximum matching in general graphs. In

Foundations of Computer Science, 1980., 21st Annual Symposium on, pages 17–27. IEEE, 1980.

C. A. Miller. Evasiveness of graph properties and topological fixed-point theorems. 2013. doi: 10.1561/
0400000055.

N. Robertson and P. Seymour. Graph minors .xiii. the disjoint paths problem. Journal of Combinatorial
Theory, Series B, 63(1):65 – 110, 1995. ISSN 0095-8956. doi: https://doi.org/10.1006/jctb.1995.1006.
URL http://www.sciencedirect.com/science/article/pii/S0095895685710064.

A. Sundaram. On Classical and Quantum Constraint Satisfaction Problems in the Trial and Error Model.
PhD thesis, National University of Singapore, 2017.

14

http://www.sciencedirect.com/science/article/pii/0304397580900092
http://www.sciencedirect.com/science/article/pii/S0095895611000712
https://doi.org/10.1007/BF01681329
http://www.sciencedirect.com/science/article/pii/S0095895685710064

	Introduction
	Hidden Graph Properties
	Hidden CSPs for Monotone Graph Properties
	Relevant Problems About Monotone Graph Properties

	The Difficulty of Hidden Problems
	Fixed Size Certificate Extension
	The Size of the Incomplete Certificates Matters

	When is Certificate Extension Efficient?
	Connectivity and Spanning Trees (Undirected Graphs)
	Perfect Matchings (Undirected Graphs)
	Vertex-disjoint Cycle Cover (Undirected Graphs)
	Undirected Path

	Certificate Extensions and Matroids
	The Intersection of Two Matroids

	Conclusions and Future Work

